

LA-UR-18-24880

Approved for public release; distribution is unlimited.

Title: RBS uncertainty study

Author(s): Usov, Igor Olegovich

Hubbard, Kevin Mark Vodnik, Douglas R.

Peterson, Reuben James Chancey, Matthew Ryan

Wang, Yongqiang Shin, Swanee Tseng, Daniel

Intended for: Report

Issued: 2018-06-06

RBS uncertainty study

I. Usov, D. Vodnik, K. Hubbard, R. Peterson (TFC, MST-7, LANL)
Y. Wang, M. Chancey (IBML, MST-8, LANL)

S. Shin (LLNL)

D. Tseng (EAG)

05-22-18

LA-UR-18-xxxx

"Review of RBS measurements accuracy and recommendations to improve it", I. Usov et al., LA-UR-17-31226

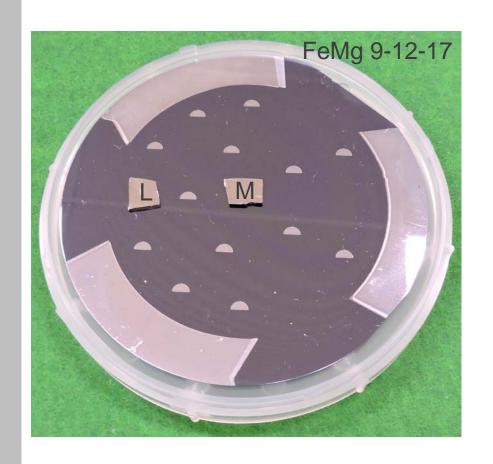
RBS strengths and weaknesses from a customer viewpoint

Strengths

Quantitative and non-destructive analysis of thin films and near surface regions of bulk materials:

- Chemical composition and Impurity elements
- Stoichiometry and Areal elemental density
- Depth profiling and Thickness

<u>Weaknesses</u>


- High cost (1-3K per sample)
- Expertize in RBS is not widely available
- Experimental set up is often one of a kind "home made thing"
- Discrepancies between data are possible

RBS measurements can be VERY accurate

Sources of RBS data uncertainties	Cures
1 st : instrument/operator	Maintenance, calibration, upgrades, expertise
2 nd : stopping cross section	Do not rely on TRIM. Measure it.
3rd: sample quality	Choose alloys that can actually be fabricated
4 th : data analysis	Software, expertize and diligence

Independent RBS measurements are often used to standardize procedures RBS accuracy: ~ 1% is possible

Typical set of opacity foils and witness samples

Opacity foil section view

top parylene (~10 µm)

target alloy (~0.3 µm)

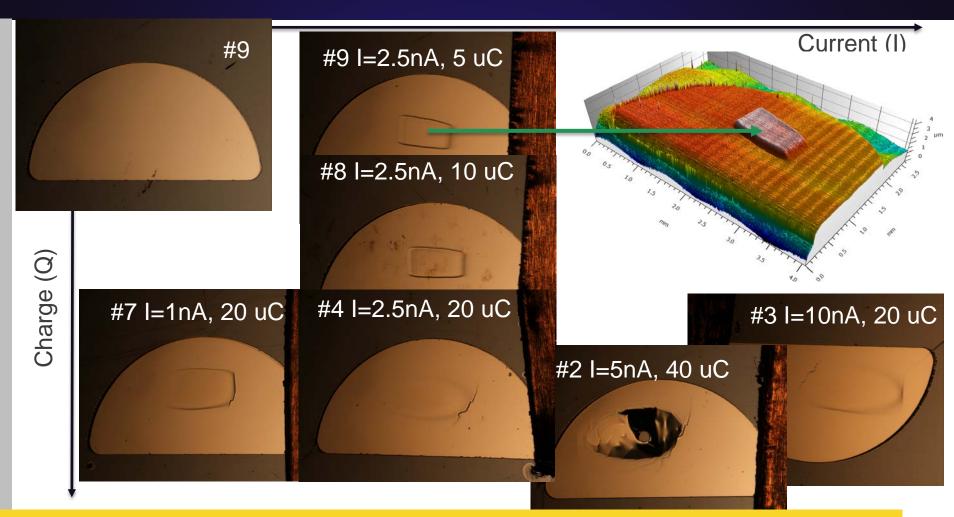
bottom parylene (~10 µm)

Si wafer

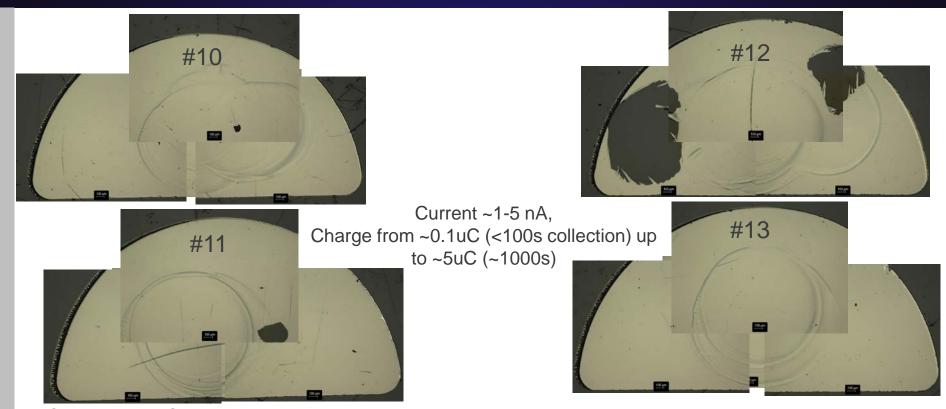
Witness section view

target alloy (~0.3 µm)

Carbon substrate


13 opacity foils and 2 witnesses (L-left and M-middle) were selected for independent RBS analysis at LANL, LLNL and EAG

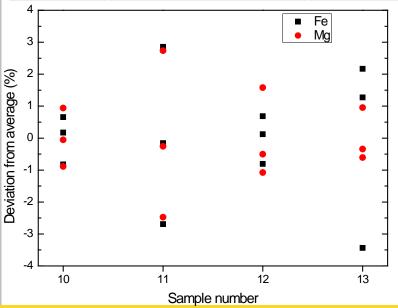
RBS measurements conditions and data analysis


	LANL	LLNL	EAG
samples	#1- #9 and 2 witness	10-13	10,11,13
Ion	He++	He+	He++
Energy	3	3	2.275
Current	1 - 10 nA	1 - 5 nA	10 nA
Charge	5 – 40 μC	0.1 – 5 μC	40
Geometry	Cornell	IBM	IBM
Backscattering angle	167	165.43	160 and 112
Data analysis software	RUMP, SIMNRA	RUMP, SIMNRA	Proprietary code (looks like SIMNRA)

RBS conditions (beam current and charge) optimization at IBML (LANL)

Nikon 20X images and Nanovea 3D height map: area analyzed by RBS (exposed to 3MeV He ions) is raised by ~ 1 µm above the foil surface

RBS conditions (beam current and charge) optimization at LLNL

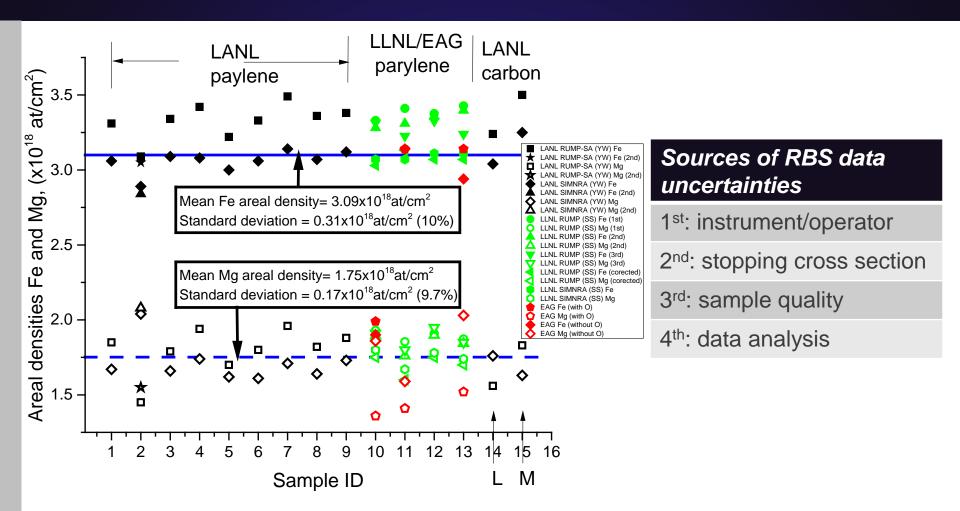

Observations by Swanee:

- All films survived except for near the film edge of #12.
- #12 was ok at ~0.2uC (for 5 times), but I observed one spot near the film edge started to delaminate when I irradiated ~2uC at once, and another spot near the film edge at the next ~2uC irradiation on slightly different (fresh) area.

Delamination occurred between 1 and 3 μC

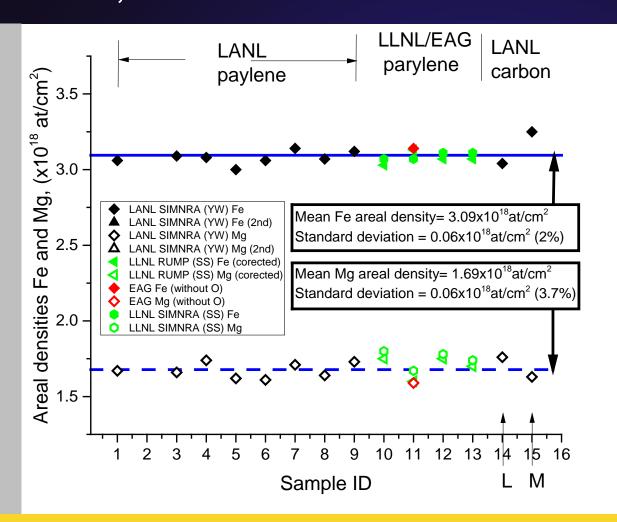
LLNL: Areal density uncertainty from 3 independent measurements taken from the same sample

	#10		#11		#12		#13	
	[Fe]	[Mg]	[Fe]	[Mg]	[Fe]	[Mg]	[Fe]	[Mg]
1	3.330	1.930	3.410	1.854	3.376	1.909	3.427	1.873
2	3.281	1.895	3.310	1.760	3.357	1.898	3.397	1.844
3	3.314	1.911	3.226	1.800	3.326	1.949	3.239	1.849
Average	3.308	1.912	3.315	1.805	3.353	1.919	3.354	1.855



geom ibm
energy 3.0
theta 0
phi 14.57
beam 4He+
Conversion 2.893 51.96
omega 14
FWHM 15.000000
Current 0.5
Tau 5.0

corr 1.395
ch 0.5


At 0.5 μC, counting statistics for Mg is 18% and for Fe is ~ 6%

Comparison of <u>ALL</u> Fe and Mg areal densities measured by RBS at LANL, LLNL and EAG

Standard deviation of 10% was found for RBS data with 2nd, 3rd and 4 uncertainties

Comparison of <u>SELECTED</u> Fe and Mg areal densities measured by RBS at LANL, LLNL and EAG

Opacity alloy on carbon witness vs parylene

Deviation from parylene average:

FeMg-L: Fe(1.6%); Mg(4.1%) FeMg-M: Fe(5.2%); Mg(3.6%)

Standard deviations for Fe and Mg areal densities (on paylene) were found to be 2.0% and 3.7%, respectively.

Fe and Mg areal densities measured by RBS at LANL, LLNL and EAG

FeMg_M Fe	ID	Elements	Nominal compostion, at/cm ²	RUMP-SA (YW), at/cm ²	SIMNRA (YW), at/cm ²	LLNL RUMP (SS), at/cm ²	LLNL RUMP corrected (SS), at/cm ²	LLNL SIMNRA (SS), at/cm ²	EAG (C0JZA638 22 March 2018)	EAG refit without Oxygen (COJZA638 May 2, 2018)
FeMg_1 M Fe	FeMg-L	Fe	3.00E+18	3.24E+18	3.04E+1	8				
FeMg_1		Mg	1.50E+18	3 1.56E+18	1.76E+1	8				
FeMg_1	FeMq M	Fe	3.00E+18	3.50E+18	3.25E+1	8				
FeMg_2 (2nd run) Fe	<u> </u>									
FeMg_2 (2nd run) Fe	FeMg 1	Fe	3.00E+18	3 3.31E+18	3.06E+1	8				
FeMg_2 (1st run) Fe	<u> </u>	Mg	1.50E+18	3 1.85E+18	1.67E+1	8				
FeMg_2 (1st run) Fe	FeMg_2 (2nd run)	Fe	3.00E+18	3.05E+18	2.84E+1	8				
FeMg_3		Mg	1.50E+18	3 1.55E+18	2.08E+1	8				
FeMg_3	FeMg_2 (1st run)	Fe	3.00E+18	3.09E+18	2.89E+1	8				
FeMg_4 Fe		Mg	1.50E+18	3 1.45E+18	2.04E+1	8				
FeMg_4 Fe	FeMg_3	Fe	3.00E+18	3.34E+18	3.09E+1	8				
FeMg_5 Fe 3.00E+18 1.94E+18 1.74E+18		Mg	1.50E+18	3 1.79E+18	1.66E+1	8				
FeMg_5 Fe 3.00E+18 1.94E+18 1.74E+18	FeMg_4	Fe	3.00E+18	3 3.42E+18	3.08E+1	8				
FeMg_6 Fe	<u> </u>									
FeMg_6	FeMg_5	Fe	3.00E+18	3.22E+18	3.00E+1	8				
FeMg_7 Fe		Mg	1.50E+18	3 1.70E+18	1.62E+1	8				
FeMg_7 Fe 3.00E+18 3.49E+18 1.71E+18 1.50E+18 1.50E+18 1.70E+18 1.71E+18 1.50E+18 1.50E+18 1.82E+18 1.64E+18 1.64E+18 1.50E+18 1.80E+18 1.80E+18 1.50E+18 1.80E+18 1.80E+18 1.50E+18 1.80E+18 1.50E+18 1.	FeMg_6	Fe	3.00E+18	3.33E+18	3.06E+1	8				
FeMg_8 Fe		Mg	1.50E+18	3 1.80E+18	1.61E+1	8				
FeMg_8 Fe 3.00E+18 3.36E+18 3.07E+18 1.82E+18 1.64E+18	FeMg_7	Fe								
FeMg_9 Fe		Mg	1.50E+18	3 1.96E+18	1.71E+1	8				
FeMg_9 Fe 3.00E+18 3.38E+18 3.12E+00 Mg 1.50E+18 1.88E+18 1.73E+18 FeMg_10 Fe 3.00E+18 1.80E+18 1.99E+18 1.99E	FeMg_8									
Mg 1.50E+18 1.88E+18 1.73E+18 FeMg_10 Fe 3.00E+18 1.50E+18 1.90e1 Mg 1.50E+18 1.50E+18 1.90e1 Mg 1.50E+18 1.50E+18 1.90e1 Mg 1.50E+18 1.80e18 1.91E+18 1.75e18 1.80e18 1.36E+18 1.86e1 O 2.63E+17 No O, C=34.5% and 5i=6.89 FeMg_11 Fe 3.00E+18 3.32E+18 3.3e18 3.07e18 3.14E+18 3.14e1 Mg 1.50E+18 1.65e18 1.67e18 1.67e18 1.41E+18 1.59e1 O 1.90E+17 FeMg_12 Fe 3.00E+18 3.35E+18 3.07e18 3.11e18 Mg 1.50E+18 1.75e18 1.75e18 1.78e18 O FeMg_13 Fe 3.00E+18 3.07e18 3.11e18 3.14E+18 2.94e1 Mg 1.50E+18 1.50E+18 1.70e18 1.70e18 1.74e18 1.52E+18 2.03e1		Mg	1.50E+18	3 1.82E+18	1.64E+1	В				
Mg 1.50E+18 1.88E+18 1.73E+18 FeMg_10 Fe 3.00E+18 1.50E+18 1.90e1 Mg 1.50E+18 1.50E+18 1.90e1 Mg 1.50E+18 1.50E+18 1.90e1 Mg 1.50E+18 1.80e18 1.91E+18 1.75e18 1.80e18 1.36E+18 1.86e1 O 2.63E+17 No O, C=34.5% and 5i=6.89 FeMg_11 Fe 3.00E+18 3.32E+18 3.3e18 3.07e18 3.14E+18 3.14e1 Mg 1.50E+18 1.65e18 1.67e18 1.67e18 1.41E+18 1.59e1 O 1.90E+17 FeMg_12 Fe 3.00E+18 3.35E+18 3.07e18 3.11e18 Mg 1.50E+18 1.75e18 1.75e18 1.78e18 O FeMg_13 Fe 3.00E+18 3.07e18 3.11e18 3.14E+18 2.94e1 Mg 1.50E+18 1.50E+18 1.70e18 1.70e18 1.74e18 1.52E+18 2.03e1	FaMa O	F0.	2.005.46	2.205.46	2.425.0	0				
Mg 1.50E+18 1.91E+18 1.75e18 1.80e18 1.36E+18 1.86e1	Felvig_9									
Mg 1.50E+18 1.91E+18 1.75e18 1.80e18 1.36E+18 1.86e1	FoMa 10	Fo	2.00E.10			2 21 - 1	2.0261	9 2.07-1	0 1.00E.1	9 1.00-19
O 2.63E+17 No 0, C=34.5% and Si=6.8% FeMg_11 Fe 3.00E+18	reivig_10									
Mg 1.50E+18 1.81E+18 1.65e18 1.67e18 1.41E+18 1.59e1 FeMg_12 Fe 3.00E+18 3.35E+18 3.07e18 3.11e18 Mg 1.50E+18 1.92E+18 1.75e18 1.78e18 O FeMg_13 Fe 3.00E+18 3.35E+18 3.07e18 3.11e18 3.14E+18 2.94e1 Mg 1.50E+18 1.86E+18 1.70e18 1.74e18 1.52E+18 2.03e1										
Mg 1.50E+18 1.81E+18 1.65e18 1.67e18 1.41E+18 1.59e1 FeMg_12 Fe 3.00E+18 3.35E+18 3.07e18 3.11e18 Mg 1.50E+18 1.92E+18 1.75e18 1.78e18 O FeMg_13 Fe 3.00E+18 3.35E+18 3.07e18 3.11e18 3.14E+18 2.94e1 Mg 1.50E+18 1.86E+18 1.70e18 1.74e18 1.52E+18 2.03e1	FeMg_11	Fe	3.00E+18	3		3.32E+1	8 3.3e1	.8 3.07e1		
FeMg_12 Fe 3.00E+18 3.35E+18 3.07e18 3.11e18 Mg 1.50E+18 1.75e18 1.75e18 1.78e18 O FeMg_13 Fe 3.00E+18 3.35E+18 3.07e18 3.11e18 3.14E+18 2.94e1 Mg 1.50E+18 1.86E+18 1.70e18 1.74e18 1.52E+18 2.03e1	<u> </u>	Mg	1.50E+18	3		1.81E+1	8 1.65e1	.8 1.67e1		
Mg 1.50E+18 1.75e18 1.75e18 1.78e18 O FeMg_13 Fe 3.00E+18 3.35E+18 3.07e18 3.11e18 3.14E+18 2.94e1 Mg 1.50E+18 1.86E+18 1.70e18 1.74e18 1.52E+18 2.03e1		U							1.90E+1	7 0
O S S S S S S S S S S S S S S S S S S S	FeMg_12									
Mg 1.50E+18 1.86E+18 1.70e18 1.74e18 1.52E+18 2.03e1			1.50E+18	,		1.92E+10	1./561	0 1.78e1	0	
Mg 1.50E+18 1.86E+18 1.70e18 1.74e18 1.52E+18 2.03e1	FoMa 12	Fo	2.005.46			2 255 . 4	0 2.07-4	0 2 11 - 1	0 2445.4	0 2.04-40
	elvig_13									

Thoughts, Conclusions and Future work

Bo	bb Heeter's thoughts:
	7% areal density uncertainty is the nominal requirement from the error budgeting. A tighter
	uncertainty would be beneficial for the long term.
	The sample metrology must include all materials present in the sample, e.g. including oxygen a well as iron-magnesium or barium-aluminum, since the X-ray transmission through the (hot or cold) sample is affected by whatever is in the sample, but not the tamper. So we are very interested in finding a way to accurately infer impurity content.
	onclusions on Fe and Mg areal density uncertainties: 3% (or less) for 3 independent measurements taken from the same sample at LLNL 2% (Fe) and 3.7% (Mg) for measurements performed at LANL, LLNL and EAG 5.2% (or less for Fe) and 4.1% (or less for Mg) deviation between the witness and opacity foil
_	

Future work:

- Determine RBS measurements absolute accuracy for Fe and Mg
- ☐ Compare RBS areal densities with values found fwith X-ray absorption techniques:
 - Edge (GA)
 - > DSC (LANL)
- ☐ Impurity (mainly Oxygen) content measurements
- ☐ Determine FeMg deposition uniformity over 4" wafer